NIX Photonics

aerocain Rod

200

NE

High power fiber amplification system for ultrafast lasers

Ideal for manufacturing of ultrafast highpower pulsed lasers

The aeroGAIN-ROD is the ultimate fiber amplifier module for pulsed lasers. It exhibits an exceptional power handling previously only available in solid-state configurations.

With an approximate 3300 μ m2 mode field area and high pump absorption, the aeroGAIN-ROD module offers high performance for demanding peak power applications.

aeroGAIN ROD

Applications

Ultrafast high-power pulsed

lasers

Ideal gain medium for ultrafast high-power amplifiers

The excellent mode quality and easy coupling make the aeroGAIN-ROD module an ideal gain medium for ultrafast high-power amplifiers.

Large numerical aperture and reduced reflections

The pump light is guided by our proven airclad technology which boasts high reliability, high damage threshold, and a large NA.

The modules come with high-power AR coated endcaps. The output endcap is slightly angled to prevent reflections.

Robust design optimized for OEM integration

The rugged aluminum body makes the module easy to handle and mount for both OEM integration and scientific laboratory set-ups.

Thermal management ensures high performance

Integrated water cooling with quick coupling ensures efficient thermal management and a long, maintenance-free lifetime of thousands of hours.

Diffraction-limited gain modules

Both aeroGAIN-ROD models are diffraction-limited gain modules which gives several advantages compared to standard multimode Large Mode Area fibers:

- Better output beam stability
- Excellent beam quality
- No coiling-induced mode area compression

aeroGAIN-ROD

aeroGAIN ROD

FEATURES

Diffraction-limited beam quality High peak power damage threshold High NA pump cladding AR coated endcaps Optimized for 1030 - 1040 nm **Compact and robust industrial** format Long lifetime

Specifications

Optical

Model	2.1	3.1
Signal core diameter [µm]	≈ 85	≈ 85
Signal wavelength [nm]	1030 - 1040	1030 - 1040
Pump cladding NA (FWHM @ 950 nm)	≥ 0.5	≥ 0.5
Gain fiber length [mm]	804 ± 3	804 ± 3
Cladding absorption [dB]		
@ 915 nm	5 ± 0.7	5.7 ± 0.7
@ 976 nm, nominal	≈ 15	≈ 17
PER [dB] ¹	≥ 15	≥ 15
Optical efficiency [%] ¹	≥60	≥60
Beam quality ¹	M² ≤ 1.3	M² ≤ 1.2
Mode-field diameter, 1/e ² [µm] ²	65 ± 10%	65 ± 10%
Signal average power [W]	≤ 100	≤ 250
Pump cladding diameter [µm]	260 ± 15	260 ± 15

r La constanta da la constanta

¹ Under nominal operation: Seed level 5 W @ 1030 nm, 976 nm pumping, signal power ≥ 100 W ² MFD decreases with thermal load. The actual reduction will depend on the system parameters. A typical reduction is less than 0.1 %/W (signal power).

Water cooling

Water cooling connection [mm / "]

Recommended water flow ³ [liter/minute]

Recommended water temperature ³ [°C]

Operating temperature [°C]

Storage temperature [°C]

³ We recommend DI water containing an anti-corrosive additive to protect the aluminum cooling circuit. Required water flow and water temperature depend on the actual optical system parameters.

aeroGAIN ROD

	8 mm x 1/4" BSPP
]	> 1
	≈ 25
	+20 to +30 (ambient)
	-20 to +60

Specifications

Mechanical

Dimensions (WxHxL) [mm3

Weight [kg]

Endcap length [mm]

Endcap diameter [mm]

Endcap coating R @ 1030 nm [%]

Endcap coating R @ 976 nm [%]

Endcap angle, input [°]

Endcap angle, output [°]

Optical height [mm]

35 x 35.2 x 817
2.5
5
6
≤ 0.2
≤ 0.3
≤ 0.5
2 ± 0.7
25

SPECIFICATIONS

Mechanical Drawings

aeroGAIN ROD

All NKT Photonics products are produced under our quality management system certified in accordance with the ISO 9001:2015 standard.

nktphotonics.com

